

E•FBM

Digitale Ausgangsmodule DOM08, DOM16

Technisches Handbuch

Urheberschutz:

Sämtliche Rechte zu jedweder Nutzung, Verwertung, Weiterentwicklung, Weitergabe und Kopieerstellung bleiben Firma ECKELMANN AG vorbehalten.

Insbesondere haben weder die Vertragspartner von Firma ECKELMANN AG noch sonstige Nutzer das Recht, die DV-Programme/Programmteile bzw. abgeänderte oder bearbeitete Fassungen ohne ausdrückliche schriftliche Genehmigung zu verbreiten oder zu vertreiben.

Produkt/Warennamen oder Bezeichnungen sind teilweise für den jeweiligen Hersteller geschützt (eingetragene Warenzeichen usw.); in jedem Fall wird für deren freie Verfügbarkeit/Verwendungserlaubnis keinerlei Gewähr übernommen.

Die Beschreibungsinformationen erfolgen unabhängig von einem etwaig bestehenden Patentschutz oder sonstiger Schutzrechte Dritter.

Irrtum und technische Änderungen bleiben ausdrücklich vorbehalten.

<u>Dateiname:</u> DOMxx_TB_DE.doc

<u>Version:</u> 2.4 <u>Ersterstellung</u>: 10.12.01

<u>Freigabe:</u> Datum / Name

Änderungsprotokoll

Kapitel	Datum	Bearbeiter	Änderung	Freigabe Datum / Kurzz.
Alle	15.10.01	E. Baun	Ersterstellung	_
alle	26.10.04	W. Niebling	Komplette Überarbeitung	
4.7	08/05	WN	Ergänzung Anschlußbeispiel DOM	116
4.5	08/05	WN	Fehler beseitigt in Klemmenbezeich	chnung DOM16
1.4, 9	12/05	WN	Kapitel Normen und Zulassungen Erklärung entfernt	ergänzt, CE-
2.1.2, 6.1	02 / 07	JP	Erweiterung um Modulvariante mit Adreßschalter	int. CAN-
	10/2011	WN	V2.4: Alle Kapitel über Querkomm Feuchtigkeit geändert	unikation entfernt,

Inhaltsverzeichnis

1	Einleitung	1
1.1	Systemhandbuch E•FBM	1
1.2	Bestimmungsgemäßer Gebrauch	1
1.3	Produktgebrauch und Dokumentation	1
1.4	Normen und Zulassungen	2
2	Moduleigenschaften	3
2.1	Modulvarianten, Optionen	3
2.1.1	Varianten DOM08	3
2.1.2	Varianten DOM16	3
2.1.3	Zubehör	4
2.2	Eigenschaften DOM08	5
2.3	Eigenschaften DOM16	6
2.4	Zusatzfunktionen	7
2.5	Versorgungsspannung Feldebene	8
2.6	LED pro Ausgang	8
2.7	Life-LED für den Betriebszustand des Moduls	8
2.8	Belastbarkeit der Ausgänge	8
2.9	Potentialtrennung	8
2.10	Prinzipschaltbild DOM08	9
2.11	Prinzipschaltbild DOM16	10
3	Technische Daten	11
4	Montage und Installation	14
4.1	Modulgehäuse	14
4.2	Montage	14
4.3	ESD – Schutz	14
4.4	Klemmenbezeichnungen DOM08	15
4.5	Klemmenbezeichnungen DOM16	16
4.6	Anschlussbeispiel DOM08	17
4.7	Anschlussbeispiel DOM16	18

5	Inbetriebnahme	19
6	Programmierung und Parametrierung	20
6.1	Einstellung Knotenadresse (Node ID)	
6.2	DOM08 Brücken	
6.3	DOM16 Brücken	21
6.4	Signal und Datenfluss	23
6.4.1	Signal und Datenfluss (Ausschnitt normaler Ausgang)	24
6.4.2	Signal und Datenfluss (Ausschnitt logischer Ausgang)	25
6.4.3	Signal und Datenfluss (Ausschnitt Impulsgenerator)	26
6.4.4	Signal und Datenfluss (logischer Eingang)	27
6.5	Parametrierung	28
6.5.1	Invertierung der Polarität der Ausgänge	29
6.5.2	Verhalten der Ausgänge im Fehlerfall	29
6.5.3	Modus der Life-LED	32
6.5.4	Impulsgenerator mit Puls-Weiten-Modulation	33
6.6	PDO-Mapping	34
6.6.1	Gemappte Objekte DOM08	34
6.6.2	Gemappte Objekte DOM16	34
7	Service- / Wartungsarbeiten	35
7.1	Auswechseln des Moduls	35
7.2	Wartung im Fehlerfall	35
8	Technischer Anhang: Parametrierung über CAN-Bus	36
8.1	CANopen	36
8.2	Emergency Telegramme (Fehlermeldungen)	36
8.3	Konfiguration	36
8.4	DOM08	37
8.4.1	Kommunikationsprofil (Parameter entsprechend CiA DS 301)	37
8.4.2	Standardisierter Geräteprofilbereich (Parameter entsprechend CiA DS 401)	39
8.4.3	Herstellerspezifischer Geräteprofilbereich	40
8.5	DOM16	41
8.5.1	Kommunikationsprofil (Parameter entsprechend CiA DS 301)	41

8.5.2	Standardisierter Geräteprofilbereich (Parameter entsprechend CiA DS 401)	42
8.5.3	Herstellerspezifischer Geräteprofilbereich	43
8.6	Zusatzfunktionen	44
8.6.1	Zusatzfunktion Impulsgenerator	44

1 Einleitung

Diese Dokumentation enthält neben den technischen Daten allgemeine Informationen und Hinweise für den bestimmungsgemäßen Gebrauch der digitalen Ausgangsmodule DOM08 und DOM16 der E•FBM-Serie.

1.1 Systemhandbuch E•FBM

Die allgemeinen Informationen über die Feldbusmodule der E∙FBM-Serie können dem Systemhandbuch entnommen werden.

Ebenso sind in diesem Handbuch entsprechende Hinweise für den bestimmungsgemäßen Gebrauch der Feldbusmodule enthalten.

1.2 <u>Bestimmungsgemäßer Gebrauch</u>

Die Komponenten werden ab Werk für den jeweiligen Anwendungsfall mit einer festen Hard- und Softwarekonfiguration ausgeliefert. Änderungen sind nur im Rahmen der in den Handbüchern dokumentierten Möglichkeiten zulässig. Alle anderen Veränderungen an der Hard- oder Software sowie der nicht bestimmungsgemäße Gebrauch der Komponenten bewirken den Haftungsausschluss der ECKELMANN AG.

1.3 <u>Produktgebrauch und Dokumentation</u>

Der in diesem Handbuch beschriebene Produktgebrauch richtet sich ausschließlich an technisch qualifiziertes speziell ausgebildetes Personal mit einer Ausbildung in der SPS-Programmierung, Elektrofachkräfte oder von Elektrofachkräften unterwiesene Personen, die außerdem mit den geltenden Normen vertraut sind.

Kenntnis, richtige Interpretation und technisch einwandfreie Umsetzung der hier enthaltenen Vorschriften und Hinweise sind Voraussetzung zum gefahrlosen Installieren, Inbetriebsetzen und Betreiben der hier beschriebenen Komponenten. Auf weiterführende Dokumentationen wird gegebenenfalls hier verwiesen. Sie sind in gleichem Sinne einzubeziehen.

Für Fehlhandlungen und Schäden, die an Eckelmann-Produkten und Fremdprodukten durch Missachtung der Informationen dieses Handbuches entstehen, übernimmt die ECKELMANN AG keine Haftung.

1.4 Normen und Zulassungen

Das Produkt erfüllt die Anforderungen der folgenden EG-Richtlinien:

89/336/EWG	Elektromagnetische Verträglichkeit	EMV-Richtlinie
73/23/EWG	Elektrische Betriebsmittel zur Verwendung in- nerhalb bestimmter Spannungsgrenzen	Niederspannungsrichtlinie

Die EG-Konformitätserklärung wird zur Verfügung gehalten bei der ECKELMANN AG.

2 Moduleigenschaften

Die Module sind Ausgangsmodule für 8 bzw. 16 digitale 24V-Ausgänge.

2.1 Modulvarianten, Optionen

Dieses Handbuch ist gültig für nachfolgende Modulvarianten.

2.1.1 Varianten DOM08

	Artikel-Nummer	8 digitale Ausgänge Autobaud-Erkennung am CAN-Bus
DOM08	FBMDOM0801	mit Schraubklemmanschluss
	FBMDOM0805	mit COMBICON-Anschluss

2.1.2 Varianten DOM16

	Artikel-Nummer	16 digitale Ausgänge
		Autobaud-Erkennung am CAN-Bus
DOM16	FBMDOM1601	mit Schraubklemmanschluss
	FBMDOM1602	mit Schraubklemmanschluss u. int. CAN-Adreßschalter
	FBMDOM1606	mit COMBICON-Anschluss u. int. CAN-Adreßschalter

2.1.3 Zubehör

Artikel-Nummer	Zubehör für	
FBMSTS404	FBMDOM0805	Gegensteckersatz für COMBICON-Anschluss, 4 Stecker
		Schraubklemme (Phoenix Contact MSTB 2,5/ 4-ST KMGY, Nr. 1946312)
FBMSTF404	FBMDOM0805	Gegensteckersatz für COMBICON-Anschluss, 4 Stecker
		Federkraftklemme (Phoenix Contact FKCT 2,5/ 4-ST KMGY, Nr. 1921900)
FBMSTS408	FBMDOM1605	Gegensteckersatz für COMBICON-Anschluss, 8 Stecker
		Schraubklemme (Phoenix Contact MSTB 2,5/ 4-ST KMGY, Nr. 1946312)
FBMSTF408	FBMDOM1605	Gegensteckersatz für COMBICON-Anschluss, 8 Stecker
		Federkraftklemme (Phoenix Contact FKCT 2,5/ 4-ST KMGY, Nr. 1921900)
KLZCP0001	FBMDOM0805	Codierprofile (Phoenix Contact CP-MSTB, Nr. 1734634) für COMBICON-Klemme
	FBMDOM1605	(VE=100)
		Codierreiter (Phoenix Contact CR-MSTB, Nr. 1734401) für COMBICON-Gehäuse
		(VE=100)

2.2 Eigenschaften DOM08

- Digitales Ausgangsmodul für 8 optoentkoppelte 24 V Signale
- per Software parametrierbarer Impulsgenerator mit Puls-Weiten-Modulation
- Invertierung der Ausgangslogik pro Ausgang
- Externe 24V DC Einspeisung der Ausgänge
- High-aktiv schaltend, pro Kanal 500 mA kurzschlussfest
- Kontroll-LED pro Ausgang für die Signalisierung der Ausgangszustände
- Kontroll-LED für Life Check
- Moduladresse frontseitig über Drehschalter einstellbar
- 16 Module je Knoten am CAN-Bus adressierbar
- Autobaud-Erkennung am CAN-Bus
- Schraubklemmenanschluss, Variante mit steckbaren Klemmen erhältlich
- Kleine Modulgehäusebreite 22,5mm

Die elektrischen Eigenschaften des Moduls mit COMBICON-Anschluss sind die gleichen wie für das Modul mit Schraubklemmenanschluss.

2.3 Eigenschaften DOM16

- Digitales Ausgangsmodul für 16 optoentkoppelte 24 V Signale
- per Software parametrierbarer Impulsgenerator mit Puls-Weiten-Modulation
- Invertierung der Ausgangslogik pro Ausgang
- Externe 24V DC Einspeisung der Ausgänge
- High-aktiv schaltend, pro Kanal 500 mA kurzschlussfest
- Kontroll-LED pro Ausgang für die Signalisierung der Ausgangszustände
- Kontroll-LED für Life Check
- Moduladresse frontseitig über Drehschalter einstellbar
- 16 Module je Knoten am CAN-Bus adressierbar
- Autobaud-Erkennung am CAN-Bus
- Schraubklemmenanschluss für jeden Ausgang
- Kleine Modulgehäusebreite 45mm

Die elektrischen Eigenschaften des Moduls mit COMBICON-Anschluss sind die gleichen wie für das Modul mit Schraubklemmenanschluss.

2.4 Zusatzfunktionen

Invertierung der Ausgänge

Das Modul verfügt über eine softwaremäßige Invertierung der Ausgänge.

Verhalten der Ausgänge im Fehlerfall

Das Verhalten der Ausgänge im Fehlerfall kann parametriert werden.

Impulsgenerator mit Puls-Weiten-Modulation

Der Impulsgenerator ermöglicht eine selbständige Erzeugung der Puls-Weiten-Signale an 4 Ausgängen der Module.

Der Vorteil ist die zeitsynchrone Ausgabe des Spannungsverlaufs, eine Entlastung der übergeordneten Steuerung und eine Reduzierung des Datentransfers auf dem CAN-Bus. Diese Funktion unterstützt die Ausgabe einer Puls-Weiten-modulierten Spannung, z. B. bei der Ansteuerung von Ventilen oder speziellen Motoren in der Robotik, bei denen als Funktion des Puls-Weiten-verhältnisses der resultierende Kraftverlauf eines Greifers gesteuert wird.

2.5 Versorgungsspannung Feldebene

Die Lastspannung für die Verbraucher von 24 V (18 V-32 V) wird extern über die Klemmen im Gehäuse-Oberteil zugeführt. Die 24V-Klemmen der Lastspannung sind miteinander verbunden.

Wichtig ist, dass sowohl die externe Feldspannung / Lastspannung als auch die Versorgungsspannung der Steuerelektronik dieselbe Masse aufweisen, da sonst der integrierten Eingangslogik der Halbleiterschalter das Bezugspotential fehlt.

2.6 <u>LED pro Ausgang</u>

Für jeden Ausgang ist eine rote LED als Anzeige vorgesehen. Diese LED erhält ihren Strom direkt vom Ausgang des jeweiligen Schalters und ermöglicht dadurch eine optische Kontrolle des Schaltzustandes. Die entsprechende LED leuchtet, wenn an dem zugehörigen Ausgang Spannung anliegt

2.7 Life-LED für den Betriebszustand des Moduls

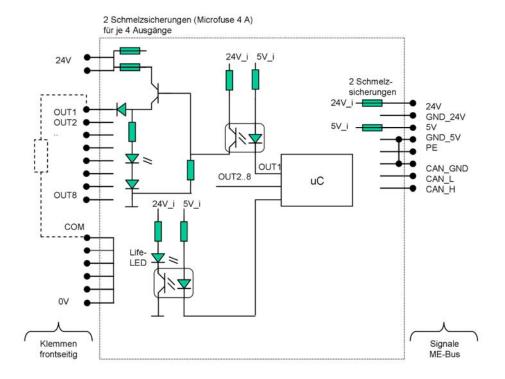
Im Kopfbereich des Moduls befindet sich die Life-LED ("Lebenslicht"), welche den Betriebszustand des Moduls signalisiert. Die einzelnen Betriebszustände des Moduls und der Life-LED sind im Kapitel Inbetriebnahme beschrieben. Die Funktion der Life-LED ist über den CAN-Bus über Objekt 2000H parametrierbar.

2.8 Belastbarkeit der Ausgänge

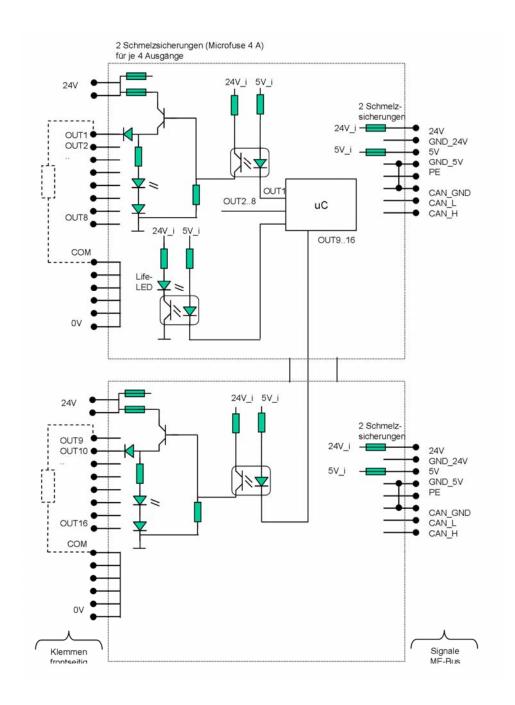
Die Ausgänge des Moduls werden von Halbleiterschaltern gesteuert, die einen internen Schutz für Überstrom, Überhitzung und Kurzschluss besitzen. Ein Drahtbruch der angeschlossenen Last wird nicht erkannt.

Die Module sind für eine dauerhafte Belastung aller Ausgänge mit dem jeweiligen Maximalstrom ausgelegt. Um höhere Ströme zu erzielen, können mehrere Ausgänge zusammengeschaltet werden.

Pro je 4 Ausgangskanäle 1..4, 5..8 (bzw. 1..4, 5..8, 9..12, 13..16) stellen Sicherungen (Microfuses 4A) einen zusätzlichen Überstrom- und Brandschutz dar. Diese können nur auslösen, wenn dauerhaft auf allen 4 Ausgangskanälen gleichzeitig ein längerer Kurzschluss auftritt.


2.9 Potentialtrennung

Alle Ausgänge sind zum Mikrocontroller hin galvanisch getrennt. Die galvanische Trennung der Ausgänge erfolgt zwischen Mikrocontroller und Halbleiterschaltern. Wichtig hierbei ist, dass sowohl die externe 24V-Feldspannung als auch die 24V-Versorgungsspannung der Steuerelektronik dieselbe Masse aufweisen, da sonst der integrierten Eingangslogik der Halbleiterschalter das Bezugspotential fehlt.



2.10 Prinzipschaltbild DOM08

2.11 Prinzipschaltbild DOM16

3 Technische Daten

Allgemeine Daten	
Verwendung:	
DOM08	8 Kanal Ausgangsmodul 24 V DC
DOM16	16 Kanal Ausgangsmodul 24 V DC
	Halbleiterschalter gegen 24 V DC schaltend (High Side Switches)
Anzeige	Betriebszustands-LED. Parametrierbar über CANopen Objekt 2000H
	Eine LED pro Ausgang, Anschluss parallel zum Schalterausgang
Moduladressierung	4 Bit, frei wählbar im Bereich 10h bis 1Fh
Anschlusstechnik	direkte Schraubklemmtechnik optional COMBICON-Steckertechnik mit
	Schraubklemmen oder Federkraft-Steckern
Gewicht:	
DOM08	145 g
DOM16	215 g
Einbauhöhe	min. 180mm
Abmessungen (H x B x T)	
DOM08	99 mm x 22,5 mm x 114,5 mm
DOM16	99 mm x 45,0 mm x 114,5 mm
	Die Abmessungen gelten für Schraubklemmenanschluss und COMBICON-
	Anschluss ohne Gegenstecker

Versorgung		
Versorgungsspannungen:		
Schaltspannung der Ausgänge	typ. 24V DC (1832V DC) externe Einspeisung	
Steuerspannung zur Ansteuerung	typ. 24V DC (1832V DC) über ME-Bus	
Logikspannung	typ. 5,0V DC (4,755,24V DC) über ME-Bus	
Stromaufnahme des Logikteils über internen		
Bus 5V (und 24V externer Einspeisung):		
DOM08, 4 Ausgänge eingeschaltet	typ. 95 mA	
DOM08, 8 Ausgänge eingeschaltet	max. 180 mA	
DOM16, 8 Ausgänge eingeschaltet	typ. 130 mA	
DOM16, 16 Ausgänge eingeschaltet	max. 240 mA	
Stromaufnahme der Schalteransteuerung		
über externe Feldspannung 24V (32V):		
DOM08, 4 Ausgänge eingeschaltet	typ. 15 mA (bei 24V), typ. 20 mA (bei 32V)	
DOM08, 8 Ausgänge eingeschaltet	max. 25 mA (bei 24V), max. 30 mA (bei 32V)	
DOM16, 8 Ausgänge eingeschaltet	typ. 25 mA (bei 24V), typ. 30 mA (bei 32V)	
DOM16, 16 Ausgänge eingeschaltet	max. 50 mA (bei 24V), max. 60 mA (bei 32V)	
Verlustleistung:		
DOM08, 4 Ausgänge eingeschaltet	typ. 1,0 W	
DOM08, 8 Ausgänge eingeschaltet	typ. 1,8 W	
DOM16, 8 Ausgänge eingeschaltet	typ. 1,5 W	
DOM16, 16 Ausgänge eingeschaltet	typ. 3,0 W	

Ausgänge		
Ausgänge:		
Schaltspannung der Ausgänge	Typ. 24V DC (1832V DC) externe Einspeisung	
Lastcharakter	ohmsch, induktiv, kapazitiv	
max. Dauerstrom pro Kanal	500 mA	
kurzzeitiger Strom pro Kanal für 1 s	700 mA	
Spannungsabfall eines Schalters	max. 400 mV bei 500 mA	
mind. Spannung an den Ausgangsklemmen		
bei Volllast (0,5 A)	Versorgungsspannung – 1,0 V	
Parallelschaltung mehrerer Ausgänge	möglich	
max. Schaltfrequenz der Schalter	ca. 250 Hz bei ohmscher Last	
selbständiger Wiederanlauf nach Kurz-	ja (bei vorhandener Ansteuerung)	
schluss	kurzzeitig 4,0 A (im Schalter begrenzt)	
Kurzschlussspitzenstrom pro Kanal:		
selbstständiger Wiederanlaufstrom bei Dau-	3,0 A gepulst (bei vorhandener Ansteuerung) abgeschaltet	
erkurzschluss am Ausgang	pro Ausgang liegt eine LED am Schalterausgang	
Ausgangsanzeige	vorhanden	
Verpolungsschutz für Einspeisung		
Ausgangszustand bei fehlender Ansteue-	abgeschaltet	
rung durch Logikteil	nein	
Zwischenspeicherung des Ansteuersignals	Es besteht eine Verbindung der Ausgangsmasseleitungen untereinander	
galvanische Trennung		

Absicherung	
Absicherung:	
Schalter	Jeweils für 4 Ausgänge Microfuse 4 A träge
	optional steckbar
Schalteransteuerung	SMD-Schmelzsicherung 500 mA träge
Logikteil	SMD-Schmelzsicherung 500 mA träge
Rückspeisung	bis max. <u>+</u> 32 V DC an einer Ausgangsklemme möglich
Potentialtrennung zwischen Logikteil und	500 V DC
Ausgangsklemmen	
Schutz	Ausgänge sind gegen Überhitzung, Kurzschluss und Verpolung bis ±32 V DC
	geschützt.
	Zusätzlicher Brandschutz durch Schmelzsicherung 4 A. Suppressor-diode
	(36V) parallel zu jedem Schalterausgang.
	Längsdiode zwischen Schalterausgang und Ausgangsklemme.
	Auslösung eines RESET bei abfallender Logikspannung.

Umgebung	Transport und Lagerung	Betrieb
Umgebungstemperatur	-20°C bis +70°C	0°C bis +50°C
		Bei maximaler Last, senkrechter
		Montage und ausreichender Konvek-
		tion
Temperaturänderung	max. 20 K/h	max. 10 K/h
Relative Luftfeuchte (nicht kondensierend)	5% bis 95%	5% bis 95%
Schock (10 ms)	max. 15 G	max. 5 G
Vibration (10 bis 100 Hz)	max. 2 G	max. 0,5 G
Luftdruck	660 hPa bis 1060 hPa	860 hPa bis 1060 hPa
Schutzart	IP20	

4 Montage und Installation

4.1 Modulgehäuse

Alle Module der E•FBM-Serie haben modulare ME BUS-Gehäuse. Die Gehäuse bestehen grundsätzlich aus einem Unterteil und einem Oberteil mit Elektronik. Nähere Details zu dem Gehäuseaufbau sind im FBM-Handbuch beschrieben.

4.2 Montage

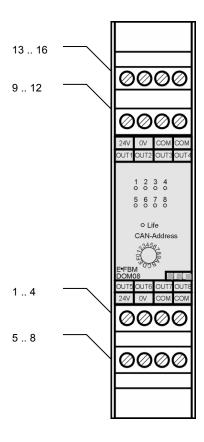
Alle Module der E•FBM-Serie können direkt auf einer Trageschiene TS35 mit einem Höhenmaß von 7,5 oder 15mm gemäß Europa Norm EN 50022 aufgerastet werden.

Diese Montage ist einfach und platzsparend. Die einzelnen Module werden, dank dem im Gehäuseboden integrierten 10-poligen Querverbinder, sicher positioniert und verbunden. Über den Querverbinder erfolgt die Energieversorgung der Steuerelektronik der Module sowie die Übertragung der Bussignale.

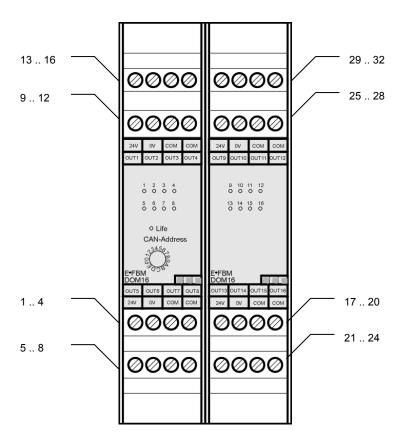
Die Einbaulage muss senkrecht sein, damit eine ausreichende Durchlüftung gewährleistet ist. Für das Modul sollte oben und unten ein Freiraum von mindestens 80mm freigelassen werden.

4.3 ESD – Schutz

Bei jedem Umgang mit dem Modul sind geeignete ESD- Schutzmassnahmen zu beachten, wie z.B. der Gebrauch von Armbändern, leitfähigen Unterlagen und geeignetem Verpackungsmaterial.


Es sind folgende Punkte zu befolgen:

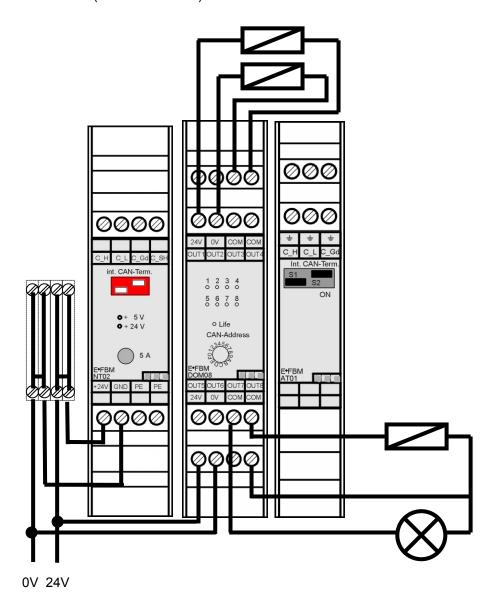
- Kontrolle der gesamten Anlage auf richtige Verdrahtung
- Überprüfung der eingestellten CAN-Adresse
- Überprüfung der korrekten ME-Bus Kontaktierung
- Überprüfung der korrekten Erdung



4.4 <u>Klemmenbezeichnungen DOM08</u>

Klemme	Bezeichnung	Signal	Kommentar
9, 10, 11,	OUT1OUT8	8 digitale Ausgänge 24V	
12, 1, 2, 3,			
4			
13, 5	+24V	Geberversorgung 24V	Klemmen intern gebrückt
14, 6	0V	Bezugspotential Geberversorgung	Klemmen intern gebrückt
15, 16, 7, 8	COM	Bezugspotential Last	Klemmen intern gebrückt,
			gebrückt mit 0V

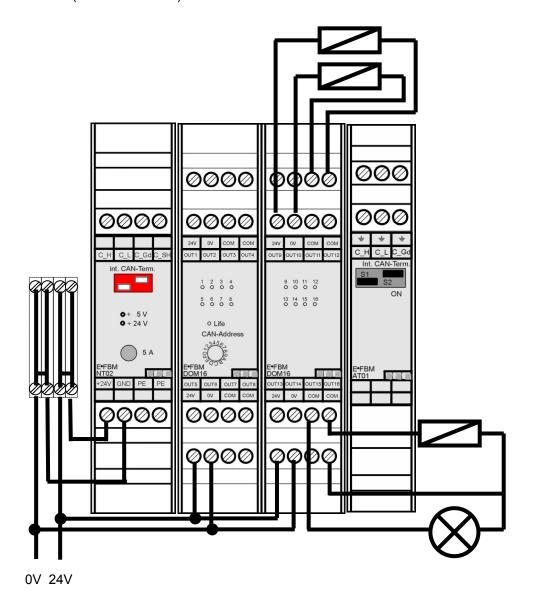
4.5 <u>Klemmenbezeichnungen DOM16</u>


Klemme	Bezeichnung	Signal	Kommentar
9, 10, 11,	OUT1OUT16	16 digitale Ausgänge 24V	
12, 1, 2, 3,			
4, 25, 26,			
27, 28, 17,			
18, 19, 20			
13, 5	+24V	Geberversorgung 24V (OUT1OUT8)	Klemmen intern gebrückt
14, 6	0V	Bezugspotential Geberversorgung (OUT1OUT8)	Klemmen intern gebrückt
15, 16, 7, 8	СОМ	Bezugspotential Last (OUT1OUT8)	Klemmen intern gebrückt,
			gebrückt mit 0V
29, 21	+24V	Geberversorgung 24V (OUT9OUT16)	Klemmen intern gebrückt
30, 22	0V	Bezugspotential Geberversorgung (OUT9OUT16)	Klemmen intern gebrückt
31, 32, 23,	СОМ	Bezugspotential Last (OUT9OUT16)	Klemmen intern gebrückt,
24			gebrückt mit 0V

4.6 Anschlussbeispiel DOM08

Das folgende Beispiel zeigt die Anschlussmöglichkeiten von Ausgängen eines DOM08 über ein Netzteil und externer 24V-Versorgung als kleinste Konfiguration.

Der Abschluss der internen CAN-Bus-Leitung erfolgt über das Netzteil NT02 und das Abschluss-Modul AT01 (Schalter S1= ON).


Bei dem Beispiel wird die für die Ausgänge benötigte 24V-Versorgung extern angeschlossen.

Das Bezugspotential 0V der externen Versorgungsspannung der Ausgänge und das Bezugspotential 0V des Netzteils müssen miteinander verbunden sein.

4.7 Anschlussbeispiel DOM16

Das folgende Beispiel zeigt die Anschlussmöglichkeiten von Ausgängen eines DOM16 über ein Netzteil und externer 24V-Versorgung als kleinste Konfiguration.

Der Abschluss der internen CAN-Bus-Leitung erfolgt über das Netzteil NT02 und das Abschluss-Modul AT01 (Schalter S1= ON).

Bei dem Beispiel wird die für die Ausgänge benötigte 24V-Versorgung extern angeschlossen.

Das Bezugspotential 0V der externen Versorgungsspannung der Ausgänge und das Bezugspotential 0V des Netzteils müssen miteinander verbunden sein.

5 Inbetriebnahme

Nach der mechanischen und elektrischen Installation der Feldbusmodule kann das Modul in Betrieb genommen werden.

<u>Versorgungsspannung an:</u> Sobald die Versorgungsspannung eingeschaltet wurde, befindet sich das Modul im Zustand der automatischen Baudratenerkennung. Die Life-LED im Kopf des Moduls blinkt mit 8 Hz. Nach Erkennung der Baudrate erfolgt die interne Initialisierung des Moduls. Danach befindet sich das Modul in dem internen Status "*Preoperational*". Das Modul befindet sich nun in Bereitschaft und erwartet Ansteuerbefehle über den CAN-Bus. Die Life-LED blinkt mit 0,25 Hz.

<u>Initialisierung des Moduls:</u> Nach erfolgter Initialisierung des Moduls über den CAN-Bus (z.B. durch eine Steuerung) mit dem Kommando "Start-remote-Node" befindet sich das Modul im Status "*Operational*". Die Life-LED leuchtet (dauernd ein).

Es sind alle Ausgänge anzusteuern und die spezifizierten Spannungs- und Stromwerte zu überprüfen.

<u>Modul gestoppt:</u> Wenn über den CAN-Bus ein Kommando "Stop-remote-Node" gesendet wird, geht das Modul in den Zustand "*Stopped*". Das Modul wartet auf ein entsprechendes Kommando um diesen Zustand zu verlassen. In diesem Zustand ist die Life-LED dauernd aus.

Der Modus der Life-LED ist über den CAN-Bus änderbar (siehe Kapitel Parametrierung). Die obigen Aussagen zu der Life-LED gelten daher nur für die Default-Einstellung.

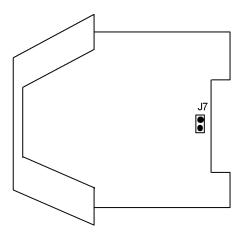
6 Programmierung und Parametrierung

6.1 Einstellung Knotenadresse (Node ID)

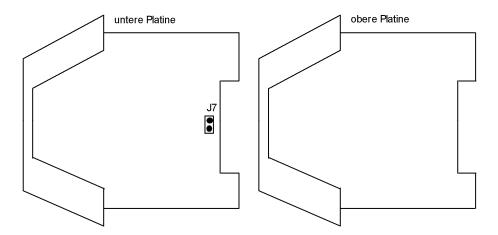
Jedes E∙FBM-Modul in einer Linie muss mit einer eindeutigen Knotenadresse am CAN-Bus eingestellt sein.

Die Einstellung der Knotenadresse erfolgt über einen frontseitig zugänglichen Hex-Schalter (4 niederwertige Adressenbits) und über fest verdrahtete Brücken innerhalb des Gehäuses (3 höherwertige Adressenbits). Innerhalb eines Modultyps sind somit maximal 16 Module möglich.

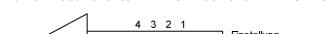
Modultyp	Höherwertige Adressenbits fest eingestellt	Niederwertige Adressenbits frontseitig über Hex-Schalter einstellbar	Eingestellte Knotenadresse (hex)	Eingestellte Knotenadresse (dezimal)
DOMxx, DIO88	10H	0FH	10H1FH	16 31



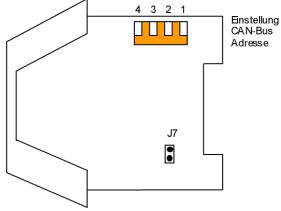
Es ist bei der Einstellung der Knotenadresse darauf zu achten, dass keine Doppelbelegungen von Modulen mit gleichen Knotenadressen am CAN-Bus vorkommen. d.h. mehrere Module der obigen Tabelle am gleichen CAN-Bus müssen unterschiedlich eingestellte Hex-Schalter besitzen.



6.2 DOM08 Brücken



6.3 DOM16 Brücken



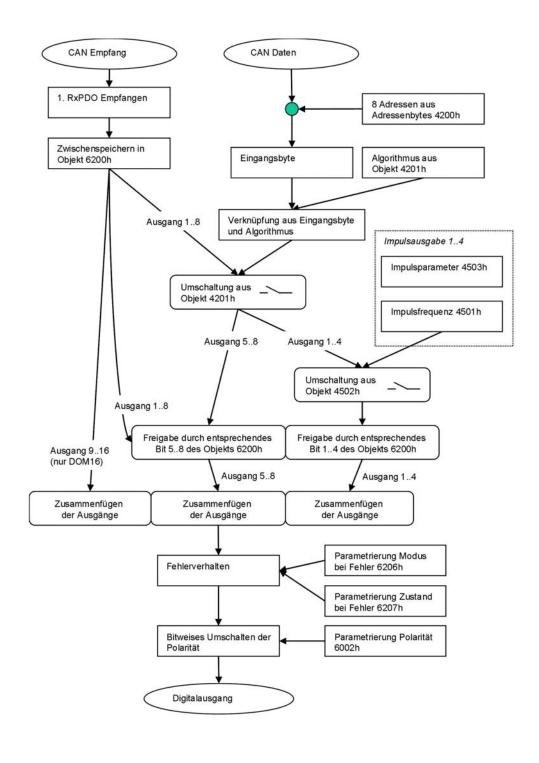
In dem Modul ist die untere und obere Platine elektrisch und mechanisch über eine Pfostenreihe verbunden. Die beiden Platinen können durch vorsichtiges Ziehen voneinander getrennt werden. Nach der Kontrolle oder Einstellung der Brücken werden die beiden Platinen wieder über die Pfostenleiste verbunden.

Nur für Modulvariante FBMDOM1602 und FBMDOM1606:

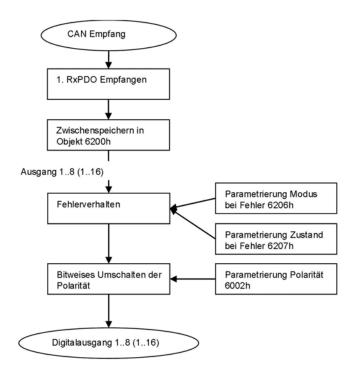
Über den 4-poligen DIP-Schalter kann die Basis-Adresse (höherwertige Adressenbits) des CAN-Busses verändert werden. Die vor eingestellte Adresse sollte im Normalfall nicht geändert werden.

Die Einstellung der Basisadresse erfolgt über die DIP-Schalter 1..3. Die Einstellung von DIP-Schalter 4 (ON oder OFF) hat keinen Einfluss auf die resultierende Basisadresse.

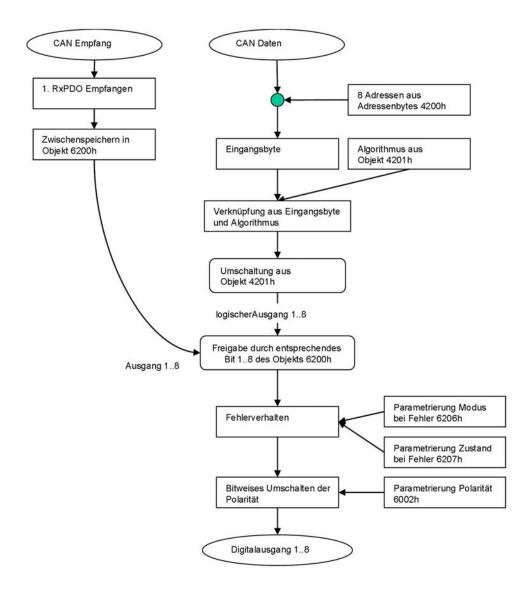
DIP-Schalter	DIP-Schalter	DIP-Schalter	DIP-Schalter	Resultierende
1	2	3	4	Basisadresse
OFF	OFF	OFF	OFF	00H
ON	OFF	OFF	OFF	10H
OFF	ON	OFF	OFF	20H
ON	ON	OFF	OFF	30H
OFF	OFF	ON	OFF	40H
ON	OFF	ON	OFF	50H
OFF	ON	ON	OFF	60H
ON	ON	ON	OFF	70H



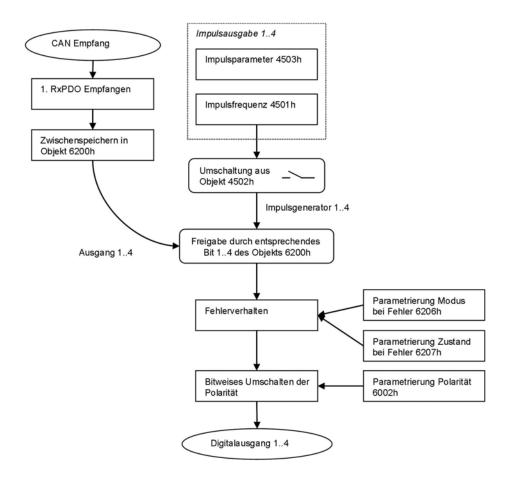
Die Brücke J7 ist für einen optionalen Abschluß des CAN-Busses vorgesehen. Bei geschlossener Brücke wird zwischen den Leitungen CAN_L und CAN_H auf dem ME-Bus ein Widerstand von 120 Ohm zugeschaltet. Diese Brücke darf im Normalfall nicht geschlossen sein.



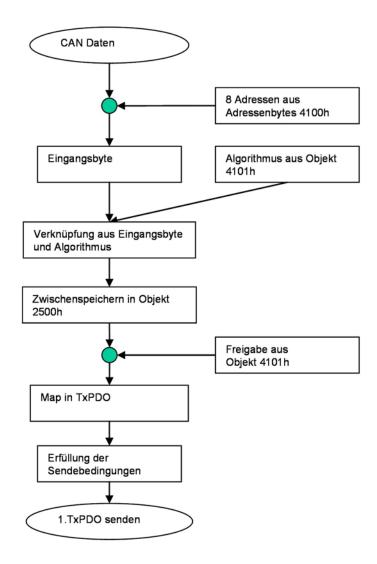
6.4 Signal und Datenfluss



6.4.1 Signal und Datenfluss (Ausschnitt normaler Ausgang)



6.4.2 <u>Signal und Datenfluss (Ausschnitt logischer Ausgang)</u>


6.4.3 <u>Signal und Datenfluss (Ausschnitt Impulsgenerator)</u>

6.4.4 <u>Signal und Datenfluss (logischer Eingang)</u>

6.5 <u>Parametrierung</u>

Nach einem Power On und nach der anschließenden internen Initialisierung besteht die Möglichkeit, folgende Objekte per SDO-Transfer zu parametrieren:

Kommunikationsprofil (communication profile area):

Parameter	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Vorein- gesteller Wert
Guard Time (ms)	100C	0	unsigned 16	0 65535	0
Life Timefactor	100D	0	unsigned 8	0 255	0
Heartbeat Time (ms)	1017	0	unsigned 16	0 65535	0
Inhibit Time für 1. TxPDO (0.1 ms)	1800	3	unsigned 16	0 2550	0

Standardisierter Geräteprofilbereich:

Parameter	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Voreingestel- ler Wert
Invertierung der Polarität der Ausgänge	6202	1, 2		Siehe folgendes Kapitel	
Verhalten der Ausgänge im Fehlerzustand	6206,	1, 2		Siehe folgendes Kapitel	
	6207				
NMT-Verhalten des Moduls bei schwerwiegen-	67FE	1	unsigned 8	0: preoperational	0
den Kommunikationsfehlern				1: unverändert	
				2: stopped	

Herstellerspezifischer Geräteprofilbereich:

Parameter	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Vorein- gesteller Wert
Modus der Life-LED	2000	1		Siehe folgendes Kapitel	

Herstellerspezifischer Geräteprofilbereich (Zusatzfunktionen):

Parameter	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Vorein- gesteller Wert
Impulsgenerator Frequenz	4501	1	Siehe folgendes Kapitel		
Impulsgenerator Freigebe und Puls-Weiten-	45024503	14	4		
verhältnis					

6.5.1 <u>Invertierung der Polarität der Ausgänge</u>

Über diese Funktion kann die Polarität der Ausgänge (Objekt 6202h) entsprechend den Anforderungen der Anwendung invertiert werden.

Die Funktion benötigt die folgenden Parameter:

Parameter	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Voreingestel- ler Wert
Invertierung der Polarität der Ausgänge 18	6202	1	unsigned 8	Bitmaske 0 -> Eingang n unver- ändert 1 -> Eingang n inver- tiert	0
Invertierung der Polarität der Ausgänge 916 (nur DOM16)	6202	2	unsigned 8	Bitmaske 0 -> Eingang n unver- ändert 1 -> Eingang n inver- tiert	0

Das Bitmuster ist in binärer Darstellung aufgeführt.

Beispiel Ausgang	Unverändert	invertiert
1	(Index 6202h, Sub-Index1) = xxxxxxx0	(Index 6202h, Sub-Index1) = xxxxxxx1
5	(Index 6202h, Sub-Index1) = xxx0xxxx	(Index 6202h, Sub-Index1) = xxx1xxxx
8	(Index 6202h, Sub-Index1) = 0xxxxxxx	(Index 6202h, Sub-Index1) = 1xxxxxxx
9	(Index 6202h, Sub-Index2) = xxxxxxx0	(Index 6202h, Sub-Index2) = xxxxxxx1
13	(Index 6202h, Sub-Index2) = xxx0xxxx	(Index 6202h, Sub-Index2) = xxx1xxxx
16	(Index 6202h, Sub-Index2) = 0xxxxxxx	(Index 6202h, Sub-Index2) = 1xxxxxxx

6.5.2 <u>Verhalten der Ausgänge im Fehlerfall</u>

Mit dem Parameter "Fault Mode" (Objekt 6206h) wird definiert, ob ein Ausgang im Falle eines Kommunikationsfehlers mit Zustandswechsel (siehe Systemhandbuch) einen im Parameter "Fault State" (Objekt 6207h) vordefinierten oder den zuletzt gültigen Wert annehmen soll.

Die Funktion benötigt die folgenden Parameter:

Parameter	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Voreingestel- ler Wert
Fehlermodus Ausgang 18	6206	1	unsigned 8	Bitmaske	FFh
				1 -> vordefinierter	
				Fehlerzustand n	
				0 -> unverändert n	
Fehlermodus Ausgang 916	6206	2	unsigned 8	Bitmaske	FFh
(nur DOM16)				1 -> vordefinierter	
				Fehlerzustand n	
				0 -> unverändert n	
Fehlerstatus Ausgang 18	6207	1	unsigned 8	Bitmaske	0
				1 -> Ausgang n einge-	
				schaltet	
				0 -> Ausgang n ausge-	
				schaltet	
Fehlerstatus Ausgang 916	6207	2	unsigned 8	Bitmaske	0
(nur DOM16)				1 -> Ausgang n einge-	
				schaltet	
				0 -> Ausgang n ausge-	
				schaltet	

Das Bitmuster ist in binärer Darstellung aufgeführt.

Beispiel Ausgang	zuletzt gültiger Wert	vordefinierter Wert entsprechend Objekt 6207h
1	(Index 6206h, Sub-Index1) = xxxxxxx0	(Index 6206h, Sub-Index1) = xxxxxxx1
5	(Index 6206h, Sub-Index1) = xxx0xxxx	(Index 6206h, Sub-Index1) = xxx1xxxx
8	(Index 6206h, Sub-Index1) = 0xxxxxxx	(Index 6206h, Sub-Index1) = 1xxxxxxx
9	(Index 6206h, Sub-Index2) = xxxxxxx0	(Index 6206h, Sub-Index2) = xxxxxxx1
13	(Index 6206h, Sub-Index2) = xxx0xxxx	(Index 6206h, Sub-Index2) = xxx1xxxx
16	(Index 6206h, Sub-Index2) = 0xxxxxxx	(Index 6206h, Sub-Index2) = 1xxxxxxx

Mit dem Parameter "Fault State" (Objekt 6207h) wird der Ausgangszustand im Falle eines Kommunikationsfehlers mit Zustandswechsel (siehe Systemhandbuch) bei entsprechend eingestelltem Fault Mode definiert.

Beispiel Ausgang	Fault State Ausgang ausgeschaltet	Fault State Ausgang eingeschaltet
1	(Index 6207h, Sub-Index1) = xxxxxxx0	(Index 6207h, Sub-Index1) = xxxxxxx1
5	(Index 6207h, Sub-Index1) = xxx0xxxx	(Index 6207h, Sub-Index1) = xxx1xxxx
8	(Index 6207h, Sub-Index1) = 0xxxxxxx	(Index 6207h, Sub-Index1) = 1xxxxxxx
9	(Index 6207h, Sub-Index2) = xxxxxxx0	(Index 6207h, Sub-Index2) = xxxxxxx1
13	(Index 6207h, Sub-Index2) = xxx0xxxx	(Index 6207h, Sub-Index2) = xxx1xxxx
16	(Index 6207h, Sub-Index2) = 0xxxxxxx	(Index 6207h, Sub-Index2) = 1xxxxxxx

Resultat der Einstellung der Bitmaske am Beispiel für Ausgang 5:

	(Index 6206h, Sub-Index1) = xxx0xxxx	(Index 6206h, Sub-Index1) = xxx1xxxx
(Index 6207h, Sub-Index1) = xxx0xxxx	Ausgang 5 behält im Fehlerfall den zu-	Ausgang 5 wird im Fehlerfall ausgeschal-
	letzt gültigen Wert	tet
(Index 6207h, Sub-Index1) = xxx1xxxx	Ausgang 5 behält im Fehlerfall den zu-	Ausgang 5 wird im Fehlerfall eingeschal-
	letzt gültigen Wert	tet

6.5.3 Modus der Life-LED

Mittels der Life-LED werden die Betriebszustände der FBM visuell dargestellt. Die Funktion der Life-LED ist über Objekt 2000h über den CAN-Bus parametrierbar.

Bedeutung	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Vorein- gesteller Wert
Modus der Life-LED	2000	1	unsigned 8	0, 1	0

Mit dem Objekt 2000h können für die FBM-Zustände zwei mögliche Darstellungsmuster der Betriebszustände parametriert werden.

	(Index 2000h, Sub-Index1) = 0	(Index 2000h , Sub-Index1) = 1
FBM-Zustand nach Spannung ein		Blinken mit 8 Hz, 1:1
(automatische Baudratenerkennung)		
FBM-Zustand "Preoperational"	Blinken mit 0,25 Hz, 1:1	Blinken mit 0,25 Hz, 1:1
FBM-Zustand "Operational"	"dauernd ein"	Blinken mit 1 Hz, 1:1
FBM-Zustand "Stopped"	"dauernd aus"	Blinken mit 0,25 Hz, 7:1 ("lange ein" und "kurz aus")

6.5.4 <u>Impulsgenerator mit Puls-Weiten-Modulation</u>

Die Funktion benötigt die folgenden Parameter:

Bedeutung	Objekt (hex)	Sub- Index	Тур	Erlaubte Eingabe	Vorein- gesteller Wert
Frequenz (Hz)	4501	1	unsigned 16	25512 siehe Anmerkung1	25
Freigabe der Puls-Weiten-Ausgabe	4502	14	Unsigned 8	>0: freigegeben 0: gesperrt siehe Anmerkung2	0
Puls-Weiten-Verhältnis	4503	14	unsigned 16	01023 siehe Anmerkung3	0

Anmerkung1: Die Frequenz wird im Objekt 4501h, Sub-Index 1 als ein Wort im Bereich von 25 bis 512 Hz übertragen.

Anmerkung2: Die Umschaltung zwischen Impulsgenerator und normalem Ausgang erfolgt im Objekt 4502h, Sub-Index 1..4.

≠ 00: Impulsgenerator freigegeben, normaler Ausgang gesperrt

00: Impulsgenerator gesperrt, normaler Ausgang freigegeben

Anmerkung3: Das Puls-Weiten-Verhältnis wird im Objekt 4503h, Sub-Index 1..4 als ein Wort im Bereich von 0 bis 1023 für Aktivzeit übertragen. Damit ergibt sich ein Rechteckverlauf mit einstellbarer Aktivzeit von 0...1023 bezogen auf die Länge der Periode von 1023. Der maximale Wert (1023) bedeutet maximale aktive Zeit des Ausganges.

Die kleinste Impulsbreite beträgt 200µs wegen Verzögerungszeiten der Hardware.

Da die Signalausgabe eine selbständige Aktivität der Ausgangsmodule darstellt, ändern sich die Ausgänge bei der entsprechenden Konfiguration selbständig ohne Vorgabe von der Steuerung.

6.6 PDO-Mapping

Der Begriff PDO-Mapping steht für "Anordnung von Anwendungsobjekten in PDOs". In Objekten RxPDO (1600h) und TxPDO (1A00h) wird diese Anordnung der Objekte für die Empfangs-PDO RxPDO 1 und Sende-PDO TxPDO 1festgelegt. Diese Anordnung ist im Modul definiert und nicht änderbar.

6.6.1 <u>Gemappte Objekte DOM08</u>

- 1. RxPDO: Im DOM08 werden die Ausgänge (Objekte: 6200h, Sub-ID 1) im ersten Byte des 1. Empfangs-PDO erwartet.
- 1. TxPDO: Bei freigegebenen logischen Funktionen (durch Objekt 4101h) wird Objekt 2500h (logische Eingänge) in das 1.PDO als 1.Byte gemappt.

Objekt	Byte	Gemapptes Objekt	Parameter
1. RxPDO	0	6200h, Sub-ID 1	Ausgang 18 (bei nicht freigegebenen logischen Ausgängen über Objekt 4201h) bzw.
			Freigabe logischer Ausgang 18 (bei freigegebenen logischen Ausgängen über Objekt 4201h)
1. TxPDO	0	2500h	Logischer Eingang 18 (bei Freigabe durch 4101h)

6.6.2 Gemappte Objekte DOM16

- 1. RxPDO: Im DOM16 werden die Ausgänge (Objekte: 6200h, Sub-ID 1, 2) im ersten und zweiten Byte des 1. Empfangs-PDO erwartet.
- 1. TxPDO: Bei freigegebenen logischen Funktionen (durch Objekt 4101h) wird Objekt 2500h (logische Eingänge) in das 1.PDO als 1.Byte gemappt.

Objekt	Byte	Gemapptes Objekt	Parameter
1. RxPDO	0	6200h, Sub-ID 1	Ausgang 18 (bei nicht freigegebenen logischen Ausgängen
			über Objekt 4201h)
			bzw.
			Freigabe logischer Ausgang 18 (bei freigegebenen logischen
			Ausgängen über Objekt 4201h)
	1	6200h, Sub-ID 2	Ausgang 916
1. TxPDO	0	2500h	Logischer Eingang 18 (bei Freigabe durch 4101h)

7 Service- / Wartungsarbeiten

Generelle Wartungshinweise sind im Systemhandbuch beschrieben.

7.1 Auswechseln des Moduls

Die Modulelektronik wird bei einem Defekt komplett gewechselt. Dazu sind zunächst alle angeschlossenen Leitungen zu entfernen und die Spannung auszuschalten.

Da die einzelnen Module über einen Stecker mit dem internen ME-Bus verbunden sind, muss das betroffene Modul vor dem Entfernen von möglichen links und rechts steckenden Modulen separiert werden.

Danach wird das betroffene Modul mit einem entsprechenden Werkzeug nach Hebeln an der Klammer auf der Unterseite des Moduls von der Tragschiene entfernt.

Weitere Details sind im Systemhandbuch beschrieben.

7.2 Wartung im Fehlerfall

Problem	Mögliche Ursache	Maßnahme
Modul arbeitet nicht	Kontaktierung ME-Bus nicht korrekt	Modul überprüfen
	24V Stromversorgung am Netzteil fehlen	24V-Versorgung prüfen
	Interner Modulfehler	Modul austauschen
Life-LED leuchtet nicht	Kurzschluss 24 V intern, Schmelzsiche-	Modul tauschen
	rung hat ausgelöst	
	Life-LED ist anders programmiert	Parametrierung überprüfen
Life LED leuchtet, keine Ausgangs-LED	Signal liegt nicht an	Signal an Modul überprüfen
trotz Signal		
24V-Spannung liegt an, Ausgang ist 0,	Eingang über CAN-Bus als inverse Logik	Parametrierung überprüfen
Ausgangs-LED leuchtet nicht, aber	parametriert	
Signal liegt an		

8 <u>Technischer Anhang: Parametrierung über CAN-Bus</u>

8.1 CANopen

Die Beschreibung der implementierten Strukturen und Funktionen des CANopen wie Aufbau der Prozessdatenobjekte (PDO), der Servicedatenobjekte (SDO), Netzwerkverwaltung (NMT) sowie der Fehlermeldungen erfolgt in einem gesonderten Dokument.

8.2 Emergency Telegramme (Fehlermeldungen)

Geräteinterne Fehler werden in eine geräteinterne Fehlerliste (Predifined Error-Field) geschrieben und können über das Objektverzeichnis (Index 1003H) gelesen werden. Die Fehlerliste enthält die einzelnen in einem Gerät diagnostizierten Fehler, beschrieben durch Fehlercodes, sowie eine gerätespezifische Zusatzinformation in der zeitlichen Reihenfolge ihres Auftretens.

Über das im Objektverzeichnis Index 1001H lesbare Register wird das Vorhandensein eines Gerätefehlers sowie dessen Art angezeigt.

Die Übertragung der geräteinternern Fehlerzustände (Emergency Objects) erfolgt über standardisierte hochpriore Telegramme.

Eine Fehlermeldung wird nur einmalig bei Auftreten oder Beheben eines Fehlers gesendet.

Nähere Informationen über Fehlertelegramme können dem Systemhandbuch entnommen werden.

8.3 Konfiguration

Die Funktionalität und die Konfigurationsparameter sind soweit wie möglich im CANopen Objektverzeichnis des Gerätes abgebildet. Das Objektverzeichnis besteht aus 3 Bereichen:

- Kommunikationsprofil nach CiA DS 301
- Standardisierter Geräteprofilbereich nach CiA DS 401
- Herstellerspezifischer Geräteprofilbereich

8.4 DOM08

8.4.1 Kommunikationsprofil (Parameter entsprechend CiA DS 301)

In folgender Tabelle sind allgemeine Parameter zusammengefasst, die zum Kommunikationsprofil des CANopen Objektverzeichnisses gehören (CiA DS 301). Die wichtigsten Parameter / Objekte werden in den nachfolgenden Kapiteln näher erläutert.

Index (hex)	Sub- Index	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default (hex)
1000	0	Device type	Unsigned 32	R	Gerätetyp	00020191	
1001	0	Error Register	Unsigned 8	R	Fehlerregister, bitcodiert		00
1003		Error Field					
	0	Anzahl	Unsigned 8	RW	Anzahl aufgetretener Fehler 016	010	00
	1	1. Error field	Unsigned 32	R	Fehlercode + Manuf.specific errorfield		
	2	2. Error field	Unsigned 32	R	Fehlercode + Manuf.specific errorfield		
	16	16. Error field	Unsigned 32	R	Fehlercode + Manuf.specific errorfield		
1004		Number of PDOs			Anzahl der PDO		
	0	Anzahl	Unsigned 8	R	Insgesamt	00010000	
	1	Synchrone PDO	Unsigned 32	R	Synchrone PDO	00000000	
	2	Asynchrone PDO	Unsigned 32	R	Asynchrone PDO	00010000	
1008	0	Device Name	Vis-String	R	Gerätename	"EST FBM-DOM08	
1009	0	Hardware Version	Vis-String	R	Version HW	"Vxxh idxx	
100A	0	Software Version	Vis-String	R	Version SW	"V1.05	
100B	0	Node-Id	Unsigned 32	R	CAN-Adresse	00000010	
100C	0	Guard Time	Unsigned 16	RW	NMT Zykluszeit (ms) 065535	0000FFFF	0000
100D	0	Life time factor	Unsigned 8	RW	NMT Wartezeit 0255	00FF	00
100E	0	Node-Guarding Id	Unsigned 32	R	Cobld Nodeguard	00000700 + Node-Id	
1012	0	Time Stamp Id	Unsigned 32	R	Cobld Timestamp	80000100	
1014	0	Emergency Id	Unsigned 32	R	Cobld Emergency	40000080 + Node-Id	
1017	0	Heartbeat Time	Unsigned 16	RW	Heartbeat Zykluszeit (ms) 065535		
1200		SDO Parameter			SDO Parameter		
	0	Anzahl	Unsigned 8	R	Anzahl der Elemente	02	
	1	Client->Server Id	Unsigned 32	R	Cobld ReciveSDO	00000600+Node-Id	
	2	Server->Client Id	Unsigned 32	R	Cobld TransmitSDO	00000580+Node-Id	
1400		1.RxPDO			Kommunikationsparameter 1. RxPDO		

Index (hex)	Sub-	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default (hex)
(IICX)	0	Anzahl	Unsigned 8	R	Anzahl Elemente	04	(IICX)
	1	ID Used By PDO	Unsigned 32	R	Cobld 1.RxPDO	00000200+Node-Id	
	2	TransmissionType	Unsigned 8	R		FF	
	3	InhibitTime	Unsigned 16	R		0000	
	4	CMSPriorityGroup	Unsigned 8	R		03	
1600		1.RxPDO Mapping			Mappingparameter 1.RxPDO		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	1. Objekt	Unsigned 32	R	Ausgang 18	62000108	
1800		1.TxPDO			Kommunikationsparameter 1.TxPDO		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	04	
	1	ID Used By PDO Unsigned 32 R		R	Cobld 1.TxPD	00000180+Node-Id	
	2	TransmissionType	Unsigned 8	R		FF	
	3	InhibitTime	Unsigned 16	RW	Zeit in 0.1 ms (02550)	000009F6	0000
	4	CMSPriorityGroup	Unsigned 8	R		03	
1A00		TxPDO Mapping			Mappingparameter 1.TxPDO		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	00 bzw. 01	
	1	1. Mapped Object	Unsigned 32	R	Logische Eingänge (bei Freigabe durch 4101h)	25000108	

8.4.2 <u>Standardisierter Geräteprofilbereich (Parameter entsprechend CiA DS 401)</u>

In folgender Tabelle sind die Parameter des DOM08 zusammengefasst, die zum standardisierten Geräteprofil des CANopen Objektverzeichnisses gehören (CiA DS 401) und die eigentliche Gerätefunktionalität des Moduls beschreiben. Die Datenformate, zulässige Wertebereiche sowie Defaultwerte der Objekte werden in den nachfolgenden Kapiteln genauer erläutert.

Index	Sub-	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default
(hex)	Index						(hex)
6200		Digitale Ausgänge			Digitale Ausgänge		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Ausgänge 18	Unsigned 8	RW	Ausgänge 18		00
6202		Polarität			Polarität der Ausgänge		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Ausgänge 18	Unsigned 8	RW	Bitmaske		00
					0 -> Ausgang n unverändert		
					1 -> Ausgang n invertiert		
6206		Fault Mode			Fehlermodus		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Fault Mode 18	Unsigned 8	RW	Bitmaske		FF
					1 -> vordefinierter Fehlerzu-		
					stand n		
					0 -> unverändert n		
6207		Fault State			Vordefinierter Fehlerzustand		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Fault State 18	Unsigned 8	RW	Bitmaske		00
					1 -> Ausgang n eingeschal-		
					tet		
					0 -> Ausgang n ausgeschal-		
					tet		
67FE		Fehlerverhalten			NMT Fehlerverhalten bei		
					Kommunikationsfehlern		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	NMT-Zustand bei	Unsigned 8	RW		00: Preoperational	00
		Kommunikations-				01: unverändert	
		fehlern				02: Stopped	

8.4.3 Herstellerspezifischer Geräteprofilbereich

In folgender Tabelle sind die zusätzlichen Parameter des DOM08 zusammengefasst, die die herstellerspezifischen Gerätefunktionen beschreiben und nicht im standardisierten Geräteprofil des CANopen Objektverzeichnisses erwähnt wurden. Die Datenformate, zulässige Wertebereiche sowie Defaultwerte der Objekte werden in den nachfolgenden Kapiteln genauer erläutert.

Index (hex)	Sub-Index	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default (hex)
2000		Life-LED			Modus der Life-LED		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Life-LED	Unsigned 8	RW	00 oder 01		00
2600		Digitale Ausgänge					
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Ausgänge 18	Unsigned 8	RW	Ausgänge 18		00

8.5 DOM16

8.5.1 Kommunikationsprofil (Parameter entsprechend CiA DS 301)

In folgender Tabelle sind allgemeine Parameter zusammengefasst, die zum Kommunikationsprofil des CANopen Objektverzeichnisses gehören (CiA DS 301). Die wichtigsten Parameter / Objekte werden in den nachfolgenden Kapiteln näher erläutert.

Index (hex)	Sub-			Inhalt (hex)	Default (hex)		
1000	0	Device type	Unsigned 32	R	Gerätetyp	00020191	
1001	0	Error Register	Unsigned 8	R	Fehlerregister, bitcodiert		00
1003		Error Field					
	0	Anzahl	Unsigned 8	RW	Anzahl aufgetretener Fehler 016	010	00
	1	1. Error field	Unsigned 32	R	Fehlercode + Manuf.specific errorfield		
	2	2. Error field	Unsigned 32	R	Fehlercode + Manuf.specific errorfield		
	16	16. Error field	Unsigned 32		Fehlercode + Manuf.specific errorfield		
1004		Number of PDOs			Anzahl der PDO		
	0	Anzahl	Unsigned 32	R	Insgesamt	00010000	
	1	Synchrone PDO	Unsigned 32	R	Synchrone PDO	00000000	
	2	Asynchrone PDO	Unsigned 32	R	Asynchrone PDO	00010000	
1008	0	Device Name	Vis-String	R	Gerätename	"EST FBM-DOM16	
1009	0	Hardware Version	Vis-String	R	Version HW	"Vxxh idxx	
100A	0	Software Version	Vis-String	R	Version SW	"V1.05	
100B	0	Node-Id	Unsigned 32	R	CAN-Adresse	00000010	
100C	0	Guard Time	Unsigned 16	RW	NMT Zykluszeit (ms) 065535	0000FFFF	0000
100D	0	Life time factor	Unsigned 8	RW	NMT Wartezeit 0255	00FF	00
100E	0	Node-Guarding Id	Unsigned 32	R	Cobld Nodeguard	00000700 + Node-Id	
1012	0	Time Stamp Id	Unsigned 32	R	Cobld Timestamp	80000100	
1014	0	Emergency Id	Unsigned 32	R	Cobld Emergency	40000080 + Node-Id	
1017	0	Heartbeat Time	Unsigned 16	RW	Heartbeat Zykluszeit (ms) 065535	0000FFFF	0000
1200		SDO Parameter			SDO Parameter		
	0	Anzahl	Unsigned 8	R	Anzahl der Elemente	02	
	1	Client->Server Id	Unsigned 32	R	Cobld ReciveSDO	000000600+Node-Id	
	2	Server->Client Id	Unsigned 32	R	Cobld TransmitSDO	0000000580+Node-Id	
1400		1.RxPDO			Kommunikationsparameter 1. RxPDO		

Index (hex)	Sub-	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default (hex)
(IICX)	0	Anzahl	Unsigned 8	R	Anzahl Elemente	04	(IICX)
	1	ID Used By PDO	Unsigned 32	R	Cobld 1.RxPDO	00000200+Node-Id	
	2	TransmissionType	Unsigned 8	R		FF	
	3	InhibitTime	Unsigned 16	R		0000	
	4	CMSPriorityGroup	Unsigned 8	R		03	
1600		1.RxPDO Mapping			Mappingparameter 1.RxPDO		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	02	
	1	1. Objekt	Unsigned 32	R	Ausgang 18	62000108	
	2	2. Objekt	Unsigned 32	R	Ausgang 916	62000208	
1800		1.TxPDO			Kommunikationsparameter		
					1.TxPDO		
1	0	Anzahl Unsigned 8 R Anzahl Elemente		Anzahl Elemente	04		
	1	ID Used By PDO	Unsigned 32	R	Cobld 1.TxPD	00000180+Node-Id	
	2	TransmissionType	Unsigned 8	R		FF	
1	3	InhibitTime	Unsigned 16	RW	Zeit in 0.1 ms (02550)	000009F6	0000
	4	CMSPriorityGroup	Unsigned 8	R		03	
1A00		TxPDO Mapping			Mappingparameter 1.TxPDO		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	00 bzw. 01	
	1	1. Mapped Object	Unsigned 32	R	Logische Eingänge (bei	25000108	
					Freigabe durch 4101h)		

8.5.2 <u>Standardisierter Geräteprofilbereich (Parameter entsprechend CiA DS 401)</u>

In folgender Tabelle sind die Parameter des DOM16 zusammengefasst, die zum standardisierten Geräteprofil des CANopen Objektverzeichnisses gehören (CiA DS 401) und die eigentliche Gerätefunktionalität des Moduls beschreiben. Die Datenformate, zulässige Wertebereiche sowie Defaultwerte der Objekte werden in den nachfolgenden Kapiteln genauer erläutert.

Index (hex)	Sub-	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default (hex)
6200		Digitale Ausgänge			Digitale Ausgänge		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente,	02	
	1	Ausgänge 18	Unsigned 8	RW	Ausgänge 18		00
	2	Ausgänge 916	Unsigned 8	RW	Ausgänge 916		00
6202		Polarität			Polarität der Ausgänge		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	02	
	1	Ausgänge 18	Unsigned 8	RW	Bitmaske		00
					0 -> Ausgang n unverändert		
					1 -> Ausgang n invertiert		
	2	Ausgänge 916	Unsigned 8	RW	Bitmaske		00
					0 -> Ausgang n unverändert		
					1 -> Ausgang n invertiert		

6206		Fault Mode			Fehlermodus		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	02	
	1	Fault Mode 18	Unsigned 8	RW	Bitmaske		FF
					1 -> vordefinierter Fehlerzu-		
					stand n		
					0 -> unverändert n		
	2	Fault Mode 916	Unsigned 8	RW	Bitmaske		FF
					1 -> vordefinierter Fehlerzu-		
					stand n		
					0 -> unverändert n		
6207		Fault State			Vordefinierter Fehlerzustand		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente 02		
	1	Fault State 18	Unsigned 8	RW	Bitmaske		00
					1 -> Ausgang n eingeschal-		
					tet		
					0 -> Ausgang n ausgeschal-		
					tet		
	2	Fault State 916	Unsigned 8	RW	Bitmaske		00
					1 -> Ausgang n eingeschal-		
					tet		
					0 -> Ausgang n ausgeschal-		
					tet		
67FE		Fehlerverhalten			NMT Fehlerverhalten bei		
					Kommunikationsfehlern		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	NMT-Zustand bei	Unsigned 8	RW		00: Preoperational	00
		Kommunikations-				01: unverändert	
		fehlern				02: Stopped	

8.5.3 <u>Herstellerspezifischer Geräteprofilbereich</u>

In folgender Tabelle sind die zusätzlichen Parameter des DOM16 zusammengefasst, die die herstellerspezifischen Gerätefunktionen beschreiben und nicht im standardisierten Geräteprofil des CANopen Objektverzeichnisses erwähnt wurden. Die Datenformate, zulässige Wertebereiche sowie Defaultwerte der Objekte werden in den nachfolgenden Kapiteln genauer erläutert.

Index (hex)	Sub-Index	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default (hex)
2000		Life-LED			Modus der Life-LED		
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	01	
	1	Life-LED	Unsigned 8	RW	00 oder 01		00
2600		Digitale Ausgänge					
	0	Anzahl	Unsigned 8	R	Anzahl Elemente	02	
	1	Ausgänge 18	Unsigned 8	RW	Ausgänge 18		00
	2	Ausgänge 916	Unsigned 8	RW	Ausgänge 916		00

8.6 <u>Zusatzfunktionen</u>

8.6.1 <u>Zusatzfunktion Impulsgenerator</u>

Index	Sub-	Name	Тур	Attr.	Bedeutung	Inhalt (hex)	Default
(hex)	Index		7.		·	, ,	(hex)
4501		Frequenz			Frequenz Impulsgenera- tor		
	0	Anzahl	Unsigned 8	R		01	
	1	Frequenz	Unsigned 16	RW	25512 Hz	Siehe Kapitel Paramet- rierung	19
4502		Freigabe			Umschaltung Impulsge- nerator		
	0	Anzahl	Unsigned 8	R		04	
	1	1. Ausgang	Unsigned 8	RW	Umschaltung Impulsge- nerator / normaler Aus- gang	0X: freigegeben 00: gesperrt	00
	4	4. Ausgang	Unsigned 8	RW	Wie 1. Ausgang		
4503		Parameter			Puls-Weiten-Verhältnis		
	0	Anzahl	Unsigned 8	R		04	
	1	1. Ausgang	Unsigned 16	RW	01023	Siehe Kapitel Paramet- rierung	00
	4	4. Ausgang	Unsigned 16	RW	Wie 1. Ausgang		