Eckelmann

E*LDS for systematic cooling

Determining the expected temperature sensor measuring error following a lengthening of the cable.

It is important that all cables are shielded. The shielding must be connected to the PE across a large area and single sided.

Example with cable type "2x0,75 with an ohmic loop resistance of 186 Ohm/km" As a general rule: If e.g. a cable with only half the loop resistance of 93 Ohm/km is deployed, then the resulting measuring error is also halved!

A. Measuring error for temperature sensor NTC L243:

	Cable length 5 m	50 m	150 m
at -22 °C	0,006 K	0,06 K	0,18 K
-18 °C	0,007 K	0,07 K	0,21 K
-6 °C	0,013 K	0,13 K	0,39 K
0 °C	0,018 K	0,18 K	0,54 K
2 °C	0,022 K	0,22 K	0,66 K
5 °C	0,025 K	0,25 K	0,75 K

With increasing temperature the measuring error is greater!

B. Measuring error for temperature sensor PTC Pt1000 (independent of temperature and sensor):

at cable lenght 1,0 m: 0,186 K 2,5 m: 0,465 K 5,0 m: 0,930 K

50 m : 9,300 K !

Practically none as the cable length is compensated for during the measuring procedure.